Editorial
3 Present and past mineral dust variations – a cross-disciplinary challenge for research
Ute Merkel, D.-D. Rousseau, J.-B. W. Stuut and G. Winckler

Science Highlights: Annual Recorders of the Past
6 Mineral dust: Meteorological controls and climate impacts
Kerstin Schepanski, U. Merkel and I. Tegen
8 Dust deposition rates derived from optical satellite observations
Luca Lelli, W. von Hoyningen-Huene, M. Vountas, M. Jäger and J.P. Burrows
10 Including dust dynamics in paleoclimate modeling
Yaping Shao
12 Characterizing the temporal and spatial variability of African dust over the Atlantic
Joseph M. Prospero
14 The significance of particle size of long-range transported mineral dust
Jan-Berend W. Stuut and Maarten A. Prins
16 A 10,000 km dust highway between the Taklamakan Desert and Greenland
Aloys J-M Bory
18 The enigma of dust provenance: where else does Antarctic dust come from?
Paul Vallelonga
20 Evidence that local dust sources supply low-elevation Antarctic regions
Bess G. Koffman and Karl J. Kreutz
22 South American dust signature in geological archives of the Southern Hemisphere
Stefania Gili and Diego M. Gaiero
24 Fingerprinting aeolian dust in marine sediment: examples from Australia
Patrick De Deckker
26 Iron fertilization in the glacial ocean
Alfredo Martinez-Garcia and Gisela Winckler
28 Loess as a Quaternary paleoenvironmental indicator
Daniel R. Muhs, M.A. Prins and B. Mchaalett
30 Abrupt climate changes recorded in loess sequences
Denis-Didier Rousseau and Adriana Sima
32 Extracting paleodust information from peat geochemistry
François De Vleeschouwer, M. Ferrat, H. McGowan, H. Vanneste and D. Weiss

Program News
5 DICE: Dust impacts on Climate and Environment
35 EarthCube Research Coordination Network for Paleogeoscience Catalog
36 Carbon in Peat on EArth Through Time (C-PEAT)
37 The quest for temperature and hydroclimate records
38 Millennial-scale climate variability in the American tropics and subtropics

Workshop Reports
41 Past sea ice reconstruction - proxy data and modeling
42 PAGES2k: Advances in climate field reconstructions
43 Understanding and reconstructing the Asian climate of the last 2000 years
44 A novel multiproxy approach: The PAGES North America 2k working group
45 Australasia’s climate variability: clues drawn from paleoclimate and model data
46 Paleovariability: Data Model Comparisons
47 Third general meeting of PMIP3
48 Age models, chronologies, and databases workshop
49 “Paleoecological data analysis with R” course for Latin American researchers
50 Towards more accurate quantification of human-environment interactions in the past
51 Ramsar Wetlands: Understanding Change in Ecological Character
52 Dendrochronology heats up Down Under
53 Cast, cut, sample and analyze: A practical approach to processing speleothems
54 Mediterranean Holocene climate and human societies
55 Modeling and data perspectives on reconstructing Late Pleistocene ice sheets
56 Constraining Holocene solar forcing by “detection and attribution”
Science Highlights: Annual Recorders of the Past

6 Mineral dust: Meteorological controls and climate impacts
Kerstin Schepanski, U. Merkel and I. Tegen

Ganopolski A et al. (2010) Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, Clim Past 6: 229-244
Oerlemans J et al. (2009) Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland), J Glaciology 55: 729-736
Schepanski K et al. (2009) Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models, J Geophys Res 114, doi:10.1029/2008JD010325
Shao Y et al. (2011) Dust cycle: An emerging core theme in Earth system science, Aeolian Res 2: 181-204
Temon E et al. (2010) The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea, Biogeosciences 7: 809-826

8 Dust deposition rates derived from optical satellite observations
Luca Lelli, W. von Hoyningen-Huene, M. Vountas, M. Jäger and J.P. Burrows

Von Hoyningen-Huene W et al. (2011) Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS. Atmos Meas Tech 4: 151-171
Dinter T et al. (2009) Retrieval of aerosol optical thickness for desert conditions using MERIS observations during the SAMUM campaign. Tellus 61: 229-238

10 Including dust dynamics in paleoclimate modeling
Yaping Shao

Lambert F et al. (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:
Characterizing the temporal and spatial variability of African dust over the Atlantic

Joseph M. Prospero

Bozlaker A et al. (2013) Quantifying the contribution of long-range Saharan dust transport to particulate matter concentrations in Houston, Texas, using detailed elemental analysis, Environ Sci Technol 47 (18): 10179-10187

Doherty OM et al. (2012) Control of Saharan mineral dust transport to Barbados in winter by the Intertropical Convergence Zone over West Africa, J Geophys Res D Atmos 117, doi: 10.1029/2012JD017767

Maher BA et al. (2010) Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum, Earth Sci Rev 99: 61-97

Okin GS et al. (2011) Dust: Small-scale processes with global consequences, Eos 92: 241-242

Prospero JM et al. (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev Geophys 40(1): 1-31

Washington R. et al. (2009) Dust as a tipping element: The Bodélé Depression, Chad, PNAS 106(49): 20564-20571
Yu H. et al. (2013) Satellite perspective of aerosol intercontinental transport: From qualitative tracking to quantitative characterization, Atmos Res 124: 73-100

The significance of particle size of long-range transported mineral dust
Jan-Berend W. Stuut and Maarten A. Prins

Menéndez I et al. (2014) Dust deposits on La Graciosa Island (Canary Islands, Spain): Texture, mineralogy and a case study of recent dust plume transport. Catena 117: 133-144

A 10,000 km dust highway between the Taklamakan Desert and Greenland
Aloys J-M Bory

Biscaye PE et al. (1997) Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland, J Geophys Res-Oceans 102: 26765-26781
Drab E et al. (2002) Mineral particles content in recent snow at Summit (Greenland), Atmos Environ 36: 5365-5376
Albani S et al. (2012) Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica): implications for atmospheric variations from regional to hemispheric scales, Clim Past 8: 741-750

De Deckker P et al. (2010) Lead isotopic evidence for an Australian source of aeolian dust to Antarctica at times over the last 170,000 years, Palaeogeogr Palaeoclimatol Palaeoecol 285: 205-223

Delmonte B et al. (2007) Late Quaternary Interglacials in East Antarctica from ice core dust records. In: Sirocko F et al. (Eds) The Climate of Past Interglacials, Elsevier, 53-73

Lambert F et al. (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core, Nature 452: 616-619

Siggaard-Andersen M-L et al. (2007) Soluble and insoluble lithium dust in the EPICA DomeC ice core – Implications for changes of the East Antarctic dust provenance during the recent glacial-interglacial transition, Earth Planet Sci Lett 258: 32-43

Wegner A et al. (2012) Change in dust variability in the Atlantic sector of Antarctica at the end of the last deglaciation, Clim Past 8: 136-147

Evidence that local dust sources supply low-elevation Antarctic regions

Bess G. Koffman and Karl J. Kreutz

Albani S et al. (2012) Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica): implications for atmospheric variations from regional to hemispheric scales, Clim Past 8: 741-750

Basile I et al. (1997) Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6, Earth Planet Sci Lett 146: 573-589

Delmonte B et al. (2002), Glacial to Holocene implications of the new 27,000-year dust record from the EPICA Dome C (East Antarctica) ice core, Clim Dyn 18: 647-660
South American dust signature in geological archives of the Southern Hemisphere
Stefania Gili and Diego M. Gaiero

Diekmann B et al. (2000) Terrigenous sediment supply in the Scotia Sea (Southern Ocean): response to Late Quaternary dynamics in Patagonia and on the Antarctic Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 162: 357-387

Gaiero DM et al. (2013) Ground/satellite observations and atmospheric modeling of dust storms originating in the high Puna-Altiplano deserts (South America): Implications for the interpretation of paleo-climatic archives. J Geophys Res Atmos 118: 3817-3831

Gingele FX et al. (2007) Late Pleistocene and Holocene climate of SE Australia reconstructed from dust and river loads deposited offshore the River Murray Mouth. Earth Planet Sci Lett 255: 257-272

Fingerprinting aeolian dust in marine sediment: examples from Australia
Patrick De Deckker

Iron fertilization in the glacial ocean
Alfredo Martínez-García and Gisela Winckler

Anderson RF et al. (2014) Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean. Phil Trans R Soc A 374: 20140002
Francois R et al. (1997) Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389: 929-935
Martinez-Garcia A et al. (2014) Iron Fertilization of the Subantarctic Ocean During the Last Ice Age. Science 343: 1347-1350

Loess as a Quaternary palaeoenvironmental indicator
Daniel R. Muhs, M.A. Prins and B. Machalett

Abrupt climate changes recorded in loess sequences
Denis-Didier Rousseau and Adriana Sima

Complete set of references

European loess
Antoine P et al. (2001) High-resolution record of the last interglacial-glacial cycle in the loess palaeosol sequences of Nussloch (Rhine Valley-Germany), Quat Int 76/77: 211-229
Antoine P et al. (2009) High-resolution record of the last climatic cycle in the southern Carpathian Basin (Surduk, Vojvodina, Serbia), Quat Int 198: 19-36
Bond G et al. (1992) Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period, Nature: 360: 245-249
Bond GC, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation, Science 267: 1005-1010
Kindler P et al. (2013) NGRIP temperature reconstruction from 10 to 120 kyr b2K, Clim Past 9: 4099-4143
Lautridou JP (1985) Le cycle périglaciaire Pléistocène en Europe du Nord-Ouest et plus particulièrement en Normandie, Centre Géomorphologie Caen, Université Caen, 908 pp
Masson-Delmotte V et al. (2005) GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin, Science 309: 118-121
Rousseau DD et al. (1998) Late Pleistocene climatic variations at Achenheim, France based on a magnetic susceptibility and TL chronology of loess, Quat Res 49: 255-263
Rousseau DD et al. (2002) Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation, Quat Sci Rev 21: 1577-1592
Rousseau DD et al. (2011) North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits, Clim Past 7: 221-234

Asian loess
Ding ZL et al. (1995) Ice-Volume Forcing of East Asian Winter Monsoon Variations in the Past 800,000 Years, Quat Res 44: 149-159
Ding ZL et al. (2002) Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea d18O record, Paleoceanography 17: 5.1-5.21
Liu TS et al. (1985) Loess and the environment, China Ocean Press, 251 pp
Wang YJ et al. (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China, Science 294: 2345-2348
Wang Y et al. (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years, Science 451: 1090-1093

North American loess
Muhs DR et al. (1999) Late Quaternary loess in northeastern Colorado: Part I-Age and paleoclimatic significance, Geol Soc Am Bull 111: 1861-1875
Rousseau DD et al. (2007) Evidence of cyclic dust deposition in the US Great plains during the last deglaciation from the high-resolution analysis of the Peoria Loess in the Eustis sequence (Nebraska, USA), Earth Planet Sci Lett 262: 159-174
Sweeney MT et al. (2004) Glacial anticyclone recorded in Palouse loess of northwestern United States, Geology 32: 705-708
Sweeney MR et al. (2005) Topographic and climatic influences on accelerated loess accumulation since the last glacial maximum in the Palouse, Pacific Northwest, USA, Quat Res 63: 261

32 Extracting paleodust information from peat geochemistry
François De Vleeschouwer, M. Ferrat, H. McGowen, H. Vanneste and D. Weiss

Allan M et al. (2013) Mid and late Holocene dust deposition in western Europe: the Misten peat bog (Hautes Fagnes – Belgium). Clim Past 9: 2285-2298
De Vleeschouwer F et al. (2012) Multiproxy paleoenvironmental study in the Misten bog (East Belgium) during the last millennium. Quat Int 268: 44-57
De Vleeschouwer F et al. (2009) Multiproxy evidence of “Little Ice Age” palaeoenvironmental changes in a peat bog from northern Poland. Holocene 19: 625-637
Ferrat M et al. (2013) Numerical simulations of dust fluxes to the eastern Qinghai-Tibetan Plateau: Comparison of model results with a Holocene peat record of dust deposition. J Geophys Res Atmos 118: 4597-4609
Ferrat M et al. (2012) The inorganic geochemistry of a peat deposit on the eastern Qinghai-Tibetan Plateau and insights into changing atmospheric circulation in central Asia during the Holocene, Geochim Cosmochim Acta 91: 7-31
Ferrat M et al. (2011) Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau, Geochim Cosmochim Acta 75: 6374-6399
Gallagher K et al. (2011) Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models, Earth Planet Sci Lett 311: 182-194
Harrison SP et al. (2001) The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Sci Rev 54: 43-80
Kamber BS et al. (2010) Comment on "Lead isotopic evidence for an Australian source of aeolian dust to Antarctica at times over the last 170,000 years". Palaeogeogr Palaeoclimatol Palaeoecol 298: 432-436
Kylander ME et al. (2005) Refining the pre-industrial atmospheric Pb isotope evolution curve in Europe using an 8000 year old peat core from NW Spain. Earth Planet Sci Lett 240: 467-485
Le Roux G et al. (2012) Volcano- and climate-driven changes in atmospheric dust sources and fluxes since the Late Glacial in Central Europe. Geology 40: 335-338
Marx SK et al. (2011) Holocene dust deposition rates in Australia’s Murray-Darling Basin, record the interplay between aridity, position of the mid-latitude westerlies, Quat Sci Rev 30: 3290-3305
Marx SK et al. (2009) Long-range dust transport from eastern Australia: a proxy for Holocene aridity and ENSO induced climate
Millennial-scale climate variability in the American tropics and subtropics

Arz HW, Pätzold J, Wefer G (1998) Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from the last-glacial marine deposits off Northeastern Brazil, Quat Res 50: 157-166

Bogotá RG et al. (2011) Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka, Quat Sci Rev 30: 3321-3337

Means BB et al. (2013) Climate change patterns in Amazonia and biodiversity, Nature commun 4: 1411

Fritz SC et al. (2010) Millennial-scale climate variability during the Last Glacial period in the tropical Andes, Quat Sci Rev 29: 1017-1024

Groot M et al. (2011) Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles, Clim Past 7: 299-316

Hansen BCS et al. (1994) Late Quaternary vegetation change in the central Peruvian Andes, Palaeoecog, Palaeoclimatol, Palaeoecol 109: 263-285

Heinrich H (1988) Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years, Quat Res 29: 142-152

Hooghiemstra H (1984) Vegetational and climatic history of the high plain of Bogota, Colombia: A continuous record of the last 3.5 million years. Diss Bot 79: 1-158

Mayle FE et al. (2000) Millennial-Scale Dynamics of Southern Amazonian Rain Forests, Science 290: 2291-2294

Marx SK et al. (2005) Long term estimates of Australian dust flux into New Zealand: Quantifying the eastern Australian dust plume pathway using trace element calibrated 210Pb as a monitor. Earth Planet Sci Lett 239: 336-351

McGowan HA et al. (2008) An ultra-high resolution record of aeolian sedimentation during the late Quaternary from eastern Australia. Palaeoecog Palaeoclimatol Palaeoecol, 265: 171-181

Muller J et al. (2008a) Possible evidence for wet Heinrich phases in tropical NE Australia: The Lynch's Crater deposit. Quat Sci Rev 27: 468-475

Shotyk W et al. (2002) A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12,370 14C yr BP, and their variation with Holocene climate change. Earth Planet Sci Lett 199: 21-37

Shotyk W et al. (1998) History of atmospheric lead deposition since 12,370 14C yr BP recorded in a peat bog profile, Jura Mountains, Switzerland. Science 281: 1635-1640

Program News

38

Millennial-scale climate variability in the American tropics and subtropics
Paduano GM et al. (2003) A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum, Palaeogeog, Palaeoclimatol, Palaeoecol 194: 259-279
Power MJ et al. (2010) Paleofire activity in tropical America during the last 21,000 years: A regional synthesis based on sedimentary charcoal, PAGES news 18: 73-75
Urrego DH et al. (2010) A long history of cloud and forest migration from Lake Consuelo, Peru, Quat Res 73: 364-373
Whitney BS et al. (2011) A 45 kyr palaeoclimate record from the lowland interior of tropical South America, Palaeogeog, Palaeoclimatol, Palaeoecol 307: 177-192

Workshop Reports

46 Paleovariability: Data Model Comparisons
Laepple T, Huybers PJ (2013) Reconciling discrepancies between Uk37 and Mg/Ca reconstructions of Holocene marine temperature variability, Earth Planet Sci Lett 375: 418-429